SQuAD Reading Comprehension

نویسنده

  • Xinyi Jiang
چکیده

One important task in Natural Language Understanding is Reading Comprehension. Given a piece of text, we want to be able to answer any relevant questions. Using Stanford Question Answering Dataset(SQuAD), which is a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, we built a reading comprehension model that attains 75.2% F1 score and 65.0% Exact Match (EM) on the test set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reading Comprehension with SQuAD

The SQuAD dataset provides a reading comprehension task, with (question, answer, context) pairs. This paper attempts to develop a model to predict the answer for a given question, context pair. In a model inspired by ”Multi-Perspective Context Matching for Machine Comprehension” by Wang et al, this paper achieves 0.47 F1 score on a validation set.

متن کامل

SQuAD reading comprehension deep learning model

We introduce a neural network model for reading comprehension using the SQuAD dataset. Our model is composed of a Dynamic Coattention Network encoder (Xiong et al. [2016]) and a novel decoder designed for runtime minimization. Our model obtained an F1 score of 52.283 when tested on the SQuAD dev set, and an exact-match score of 38.723.

متن کامل

Spoken SQuAD: A Study of Mitigating the Impact of Speech Recognition Errors on Listening Comprehension

Reading comprehension has been widely studied. One of the most representative reading comprehension tasks is Stanford Question Answering Dataset (SQuAD), on which machine is already comparable with human. On the other hand, accessing large collections of multimedia or spoken content is much more difficult and time-consuming than plain text content for humans. It’s therefore highly attractive to...

متن کامل

Reading Comprehension On SQuAD Using Tensorflow

This paper describes attempts at developing a high performance reading comprehension model. Reading comprehension, in the current context, is defined as extracting textual answers from context passages given qualitative text questions. To train and test our comprehension model, we use Stanford’s SQuAD dataset, a standard dataset for comprehension tasks. We present our initial implementation of ...

متن کامل

Implementing Multi-Perspective Context Matching for the SQuAD Task in TensorFlow

The Multi-Perspective Context Matching model introduced by Wang, et al. [1] in 2016 is known to be capable of producing strong results in the SQuAD question answering task. As of this writing, it is tied for 3 place on the SQuAD leaderboard. Implementing the model efficiently is difficult in practice, and the original introduction paper leaves out some implementation details. The goal of this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018